Effects of Bacillus sp. as Bioflocculant-Producing Bacteria in Shrimp Culture

Abstract

Background: Genus Bacillus is among the most widely studied bacteria used as probiotics in aquaculture. Besides its bioflocculant activity, it can offer other benefits, such as nitrogen recycling in the culture pond. Aim. To review the application of Bacillus in shrimp culture, particularly due to its bioflocculant effects on Biofloc systems. Development: Bacillus sp. produces a broad range of extracellular polymeric substances (EPS) and antimicrobial peptides against a variety of microorganisms, in addition to improving the immune response and growth of cultured animals and disease control. The bioflocculant potential of Bacillus species makes these bacteria good candidates for use in Penaeus vannamei cultures in Bioflock systems. Conclusions: However, new bioflocculant Bacillus strains must be isolated and characterized, along with an evaluation of the bioflocculant effect on Penaeus vannamei’s metabolism and immune response.

Keywords: bacterium, bioflocculants, shrimp, culture, polymers (Source: MESH)

Downloads

Download data is not yet available.

References

Abu Tawila, Z. M., Ismail, S., Dadrasnia, A., & Maikudi Usman, M. (2018). Production and Characterization of a Bioflocculant Produced by Bacillus salmalaya 139SI-7 and Its Applications in Wastewater Treatment. Molecules. https://doi.org/10.3390/molecules23102689

Alsalman, A. J., Arabia, S., Farid, A., Mohaini, M. Al, Arabia, S., & Muzammal, M. (2022). Chitinase Activity by Chitin Degrading Strain ( Bacillus Salmalaya ) in Shrimp Chitinase Activity by Chitin Degrading Strain ( Bacillus Salmalaya ) in Shrimp Waste. 2(June), 10-17. https://doi.org/10.31782/IJCRR.2022.141107

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Azhar, M. H., Supriyono, E., Nirmala, K., & Ekasari, J. (2016). Organic carbon source and C/N ratio affect inorganic nitrogen profile in the biofloc-based culture media of Pacific white shrimp (Litopenaeus vannamei). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 21(1), 23. https://doi.org/10.14710/ik.ijms.21.1.23-28

Budi, S., Fauzul, M., Rozaimah, S., Abdullah, S., Razi, A., & Abu, H. (2023). Coagulation – flocculation of aquaculture effluent using biobased flocculant : From artificial to real wastewater optimization by response surface methodology. Journal of Water Process Engineering, 53(June), 103869. https://doi.org/10.1016/j.jwpe.2023.103869

Cardona, E., Gueguen, Y., Magré, K., Lorgeoux, B., Piquemal, D., Pierrat, F., Noguier, F., & Saulnier, D. (2016). Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology, 16(1), 1-9. https://doi.org/10.1186/s12866-016-0770-z

Che Hashim, N. F., Manan, H., Okomoda, V. T., Ikhwanuddin, M., Khor, W., Abdullah, S. R. S., & Kasan, N. A. (2022). Inoculation of bioflocculant producing bacteria for enhanced biofloc formation and pond preparation: Effect on water quality and bacterial community. Aquaculture Research, 53(4), 1602-1607. https://doi.org/10.1111/are.15678

De Lourdes Cobo, M., Sonnenholzner, S., Wille, M., & Sorgeloos, P. (2014). Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquaculture Research, 45(3), 470-475. https://doi.org/10.1111/j.1365-2109.2012.03248.x

Fakriah, N., Hashim, C., Ghazali, N. A., & Amin, N. M. (2019). Characterization of Marine Bioflocculant-producing Bacteria Isolated From Biofloc of Pacific Whiteleg Shrimp , Litopenaeus vannamei Culture Ponds Characterization of Marine Bioflocculant-producing Bacteria Isolated From Biofloc of Pacific Whiteleg Shrimp. IOP Conf. Ser.: Earth Environ. Sci. 246 012007. https://doi.org/10.1088/1755-1315/246/1/012007

Fakriah, N., Hashim, C., Manan, H., Tosin, V., Ikhwanuddin, M., Khor, W., Rozaimah, S., & Abdullah, S. (2022). Formation and pond preparation : Effect on water quality and bacterial Inoculation of bioflocculant- ­ producing bacteria for enhanced biofloc formation and pond preparation : Effect on water quality and bacterial community. November 2021. https://doi.org/10.1111/are.15678

Gosai, H. G., & Narolkar, S. (2022). Isolation , Characterization and Optimization of Bioflocculant Producing Bacteria from the Aquaculture Ponds. Journal of Emerging Technologies and Innovative Research, 9(1). www.jetir.org(ISSN-2349-5162)

Gustavo, M., Emerenciano, C., Martínez-, M., Martínez-Córdova, L. R., & Martínez-Porchas, M. (2017). Biofloc Biofloc Technology Technology ( BFT ): ( BFT ): A A Tool Tool for for Water Water Quality Quality Management in Aquaculture Management in Aquaculture Maurício. Aquaculture, 5, 91-103. https://doi.org/http://dx.doi.org/10.5772/66416

Harun, A. A. ., Hashim, N. F. ., Mohammad, N. A. ., Ikhwanuddin, M., Ismail, N., Ibrahim, Z., & Kasan, N. (2018). The potential of bioflocculant- producing bacteria as inoculum for biofloc based systems (pp. 917-922). Journal of Environmental Biology, Special issue. https://doi.org/http://doi.org/10.22438/jeb/39/5(SI)/9

Hossein, M., & Mohammadi, A. (2022). Microorganisms in biofloc aquaculture system. Aquaculture Reports, 26(May), 101300. https://doi.org/10.1016/j.aqrep.2022.101300

Huang, Z., Aweya, J. J., Zhu, C., Tran, N. T., Hong, Y., Li, S., Yao, D., & Zhang, Y. (2020). Modulation of Crustacean Innate Immune Response by Amino Acids and Their Metabolites: Inferences From Other Species. Frontiers in Immunology, 11(November), 1-15. https://doi.org/10.3389/fimmu.2020.574721

Kasan, N. A., Ghazali, N. A., Ikhwanuddin, M., & Ibrahim, Z. (2017). Isolation of potential bacteria as inoculum for biofloc formation in pacific whiteleg shrimp, Litopenaeus vannamei culture ponds. In Pakistan Journal of Biological Sciences, 20(6), 306-313). https://doi.org/10.3923/pjbs.2017.306.313

Kewcharoen, W., & Srisapoome, P. (2019). Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish & Shellfish Immunology, 94, 175-189. https://doi.org/10.1016/j.fsi.2019.09.013

Khanjani, M. H., Mohammadi, A., & Emerenciano, M. G. C. (2022). Microorganisms in biofloc aquaculture system. Aquaculture Reports, 26, 101300. https://doi.org/10.1016/j.aqrep.2022.101300

Kushwaha, P., Kumari, S., Singh, K., & Kumar, K. S. (2020). Bioflocculation : a potential means of harvesting microalgae. Journal of Emerging Technologies and Innovative Research, 7(10): 2593-2609. www.jetir.org(ISSN-2349-5162)

Luna-González, A., Ávila-Leal, J., Fierro-Coronado, J. A., Álvarez-Ruiz, P., Esparza-Leal, H., Escamilla-Montes, R., Flores-Miranda, M. Del C., Montiel-Montoya, J., & López-Álvarez, E. S. (2017). Effects of bacilli, molasses, and reducing feeding rate on biofloc formation, growth, and gene expression in Litopenaeus vannamei cultured with zero water exchange. Latin American Journal of Aquatic Research, 45(5), 900-907. https://doi.org/10.3856/vol45-issue5-fulltext-4

Minaz, M., & Kubilay, A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquaculture International, 29. 1121-1140. https://doi.org/10.1007/s10499-021-00681-x

Mohd, N., Hanis, F., Yunos, M., Hartini, H., Jusoh, W., Mohammad, A., Shiung, S., & Jusoh, A. (2019). Subtopic : Advances in water and wastewater treatment harvesting of Chlorella sp . microalgae using Aspergillus niger as bio- fl occulant for aquaculture wastewater treatment. Journal of Environmental Management, 249(August), 109373. https://doi.org/10.1016/j.jenvman.2019.109373

Nimrat, S., Khaopong, W., Sangsong, J., Boonthai, T., & Vuthiphandchai, V. (2020). Improvement of growth performance, water quality and disease resistance against Vibrio harveyi of postlarval whiteleg shrimp (Litopenaeus vannamei) by administration of mixed microencapsulated Bacillus probiotics. Aquaculture Nutrition, 26(5), 1407-1418. https://doi.org/10.1111/anu.13028

Niu, Y., Defoirdt, T., Baruah, K., Van De Wiele, T., Dong, S., & Bossier, P. (2014). Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios. Veterinary Microbiology, 173(3-4), 279-288. https://doi.org/10.1016/j.vetmic.2014.08.007

Ochoa-Solano, L., & Olmos-Soto, J. (2006). The functional property of Bacillus for shrimp feeds. Food Microbiology. https://doi.org/10.1016/j.fm.2005.10.004

Omont, A., Elizondo-González, R., Escobedo-Fregoso, C., Tovar-Ramírez, D., Hinojosa-Baltazar, P., & Peña-Rodríguez, A. (2021). Bacterial communities and digestive enzymatic activities of Litopenaeus vannamei shrimp fed pre-digested seaweeds as a functional ingredient. Journal of Applied Phycology, 33(2), 1239-1251. https://doi.org/10.1007/s10811-021-02381-8

Panigrahi, A., Sundaram, M., Chakrapani, S., Rajasekar, S., Syama Dayal, J., & Chavali, G. (2019). Effect of carbon and nitrogen ratio (C: N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc based rearing system. Aquaculture Research, 50(1), 29-41. https://doi.org/10.1111/are.13857

Ramírez, M., Domínguez, C., Salazar, L., Debut, A., Vizuete, K., Sonnenholzner, S., Alexis, F., & Rodríguez, J. (2022). The probiotics Vibrio diabolicus (Ili), Vibrio hepatarius (P62), and Bacillus cereus sensu stricto ( P64 ) colonize internal and external surfaces of Penaeus vannamei shrimp larvae and protect it against Vibrio parahaemolyticus. Aquaculture, 549(December 2021). https://doi.org/10.1016/j.aquaculture.2021.737826

Reis, W. G., Wasielesky Jr, W., Abreu, P. C., Brandão, H., & Krummenauer, D. (2019). Rearing of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in BFT system with different photoperiods: Effects on the microbial community, water quality and zootechnical performance. Aquaculture, 508, 19-29. https://doi.org/10.1016/j.aquaculture.2019.04.067

Ren, W., Li, L., Dong, S., Tian, X., & Xue, Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. In Aquaculture, 498. https://doi.org/10.1016/j.aquaculture.2018.08.043

Tang, Y., Tao, P., Tan, J., Mu, H., Peng, L., Yang, D., Tong, S., & Chen, L. (2014). Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns. In International Journal of Molecular Sciences, 15(8), 13663-13680. https://doi.org/10.3390/ijms150813663

Tepaamorndech, S., Nookaew, I., Higdon, S. M., Santiyanont, P., Phromson, M., Chantarasakha, K., Mhuantong, W., Plengvidhya, V., & Visessanguan, W. (2020). Metagenomics in bioflocs and their effects on gut microbiome and immune responses in Pacific white shrimp. Fish & shellfish immunology, 106, 733-741. https://doi.org/10.1007/s10811-021-02381-8

Thi, P., Tu, C., Hai, V. H., Thi, N., Lien, K., & Xuan, D. (2022). Evaluation of short-term toxicity of ammonia and nitrite on the survival of whiteleg shrimp , Litopenaeus vannamei juveniles. The Israeli Journal of Aquaculture. 74(2), 1-10. https://doi.org/10.46989/001c.36831

Thompson, F. L., & Abreu, P. C. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203, 263-278 https://doi.org/10.1016/S0044-8486(01)00642-1

Valencia-Castañeda, G., Frías-Espericueta, M. G., Vanegas-Pérez, R. C., Chávez-Sánchez, M. C., & Páez-Osuna, F. (2019). Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications. Environmental Toxicology and Pharmacology, 70(May), 103193. https://doi.org/10.1016/j.etap.2019.05.002

Valencia-Castañeda, G., Frías-Espericueta, M. G., Vanegas-Pérez, R. C., Pérez-Ramírez, J. A., Chávez-Sánchez, M. C., & Páez-Osuna, F. (2018). Acute Toxicity of Ammonia, Nitrite and Nitrate to Shrimp Litopenaeus vannamei Postlarvae in Low-Salinity Water. Bulletin of Environmental Contamination and Toxicology, 101(2), 229-234. https://doi.org/10.1007/s00128-018-2355-z

Viau, V. E., Rodríguez, E., & Abreu, P. C. (2014). Biofilm feeding by postlarvae of the pink shrimp Farfantepenaeus brasiliensis ( Decapoda , Penaidae ). Aquaculture Research, 44, 783-794. https://doi.org/10.1111/j.1365-2109.2011.03087.x

Wandong, F. U., Miaofei, L., Dongxu, Z., & Yufang, Z. (2021). Studies on Bioflocculant Production by Pseudoalteromonas sp . NUM8 , a Marine Bacteria Isolated from the Circulating Seawater. 20(5), 1276-1284. https://doi.org/10.1007/s11802-021-4747-7

Widanarni, Yuniasari, D. E. B. Y., Sukenda, & Ekasari, J. (2010). Nursery Culture Performance of Litopenaeus vannamei with Probiotics Addition and Different C/N Ratio Under Laboratory Condition. HAYATI Journal of Biosciences, 17(3), 115-119. https://doi.org/10.4308/hjb.17.3.115

Zheng, Y., Yu, M., Liu, J., Qiao, Y., Wang, L., Li, Z., Zhang, X. H., & Yu, M. (2017). Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Frontiers in Microbiology, 8(JUL), 1-11. https://doi.org/10.3389/fmicb.2017.01362

Wyban, J. (2019). Selective breeding of Penaeus vannamei: impact on world aquaculture and lessons for future. Journal of Coastal Research, 86(SI), 1-5. https://doi.org/10.2112/SI86-001.1

Published
2023-11-24
How to Cite
Aldana Calderón, Y., Arenal Cruz, A., & Naderkhani, G. (2023). Effects of Bacillus sp. as Bioflocculant-Producing Bacteria in Shrimp Culture. Revista De Producción Animal, 35(3). Retrieved from https://agrisost.reduc.edu.cu/index.php/rpa/article/view/e4569

Most read articles by the same author(s)