Utilization of Lignocellulosic Residues from Mushrooms in Animal Nutrition
Abstract
Background: The inclusion of low digestibility mushroom lignocellulosic residues has become a significant part of recycling wastes. The enzymes produced are capable of transforming the substrate, improving it for further use. To conduct a review on the utilization of mushroom processing residues in animal nutrition. Development: The residues derived from mushroom processing is the substrate or compost that remained after mushroom harvesting. It has the required raw materials (hay, peels, etc.), as well as some added compound, such as urea or other sources of nitrogen. Besides, the action of mycelia on the compost may enhance its nutritional value. Edible mushrooms contain high-value bioactive compounds, and make an adequate source of prebiotics that have short-chain sugars. A fifth of all mushrooms remain on the bedding, providing nutritional and medicinal values. The nutritional changes were evaluated with techniques like the Weende scheme, and of in vitro, in situ, and in vivo determinations of digestibility. Conclusions: The results of this study showed that the residues from mushroom processing using low-quality sources (especially harvested rice stalks), may be used for animal nutrition, whose evaluation is necessary through the proper methods.
Key words: nutrition, animals, mushrooms (Source: DECS)
Downloads
References
Aguilar‐Rivera, N., Llarena‐Hernández, R. C., Michel‐Cuello, C., Gámez‐Pastrana, M. R., & de Jesús Debernardi‐Vazquez, T. (2017). Competitive edible mushroom production from nonconventional waste biomass. Future Foods, 1. DOI: 10.5772/intechopen.69071
Balakrishnan, K., Dhanasekaran, D., Krishnaraj, V., Anbukumaran, A., Ramasamy, T., & Manickam, M. (2021). Edible mushrooms: A promising bioresource for prebiotics. In Advances in Probiotics (pp. 81-97). Academic Press.
Balasubramanian, M.K. (2013). Potential utilization of rice straw for ethanol production by sequential fermentation of cellulose and xylose using Saccharomyces cerevisiae and Pachysolentannophilus. International Journal of Science, Engineering, Technology and Research 2: 1531-1535. https://doi.org/10.1016/B978-0-12-822909-5.00005-8
Bhardwaj, N., Kumar, B., Agrawal, K., & Verma, P. (2021). Current perspective on production and applications of microbial cellulases: A review. Bioresources and Bioprocessing, 8(1), 1-34. https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-021-00447-6
Bilik, B.,AhmeAkdağ, A., & Ocak, N. (2020), The utilization of mushroom production wastes as feeds. Conference: II. International Agricultural, Biologica l& Life Science Conference. https://www.researchgate.net/lab/Nuh-Ocak-Lab).
El-Waziry, A., Alkoaik, F., Khalil, A., Metwally, H., & Fulleros, R. (2016). Nutrient components and in vitro digestibility of treated and untreated date palm wastes with mushroom (Pleurotusflorida). Adv. Anim. Vet. Sci, 4(4), 195-199. DOI: 10.14737/journal.aavs/2016/4.4.195.199
El-Waziry, A., Alkoaik, F., Khalil, A., Metwally, H., & Fulleros, R. (2016). Nutrient components and in vitro digestibility of treated and untreated date palm wastes with mushroom (Pleurotusflorida). Adv. Anim. Vet. Sci, 4(4), 195-199. https://researcherslinks.com/nexus_uploads/files/AAVS_MH20160217090224_El%20Waziry%20et%20al.pdf
Change, C. (2016). Agriculture and Food Security. The State of Food and Agriculture; FAO (Ed.) FAO: Rome, Italy. https://oarklibrary.com/file/2/352e0f51-894b-4447-94b8-0bd8e87c2e83/edd95bbe-1471-40c6-a3c6-107cd3333bfd.pdf
Yagi, F., Minami, Y., Yamada, M., Kuroda, K., & Yamauchi, M. (2019). Development of animal feeding additives from mushroom waste media of shochu lees. International Journal of Recycling of Organic Waste in Agriculture, 8(2), 215-220. https://link.springer.com/article/10.1007/s40093-018-0234-6
Heuze, V., Tran, G., Boval, M., Noblet, J., Renaudeau, D., Lessire, M., & Lebas, F. (2013). Rice straw. Feedipedia. org. A programme by INRA, CIRAD, AFZ and FAO. http://www. feedipedia. org/node/557 Last updated on March, 15(2013), 15.
Ikpe, J. N., Oko, E. C., & Vining-Ogu, I. C. (2019). Potentials of Bio Fermented Rice Husk Meal as a Replacement to Brewer’s Dried Grain in Finisher Broiler’s Diet. Journal of Agricultural Science (Toronto), 11(2), 533-540. https://pdfs.semanticscholar.org/0970/0037281eba8299606451ed2deca06677b7ca.pdf
Kazige, O. K., Chuma, G. B., Lusambya, A. S., Mondo, J. M., Balezi, A. Z., Mapatano, S., & Mushagalusa, G. N. (2022). Valorizing staple crop residues through mushroom production to improve food security in eastern Democratic Republic of Congo. Journal of Agriculture and Food Research, 8, 100285. https://doi.org/10.1016/j.jafr.2022.100285
Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Cruz-Martins, N., Dhanjal, D. S., ... & Kuča, K. (2021). Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications. Journal of Fungi, 7(6), 427. https://www.mdpi.com/2309-608X/7/6/42
Mahesh, M. S., & Mohini, M. (2013). Biological treatment of crop residues for ruminant feeding: A review. African Journal of Biotechnology, 12(27). DOI: 10.5897/AJB2012.2940
Malik, K., Tokkas, J., Anand, R. C., & Kumari, N. (2015). Pretreated rice straw as an improved fodder for ruminants-An overview. Journal of Applied and Natural Science, 7(1), 514-520. DOI: https://doi.org/10.31018/jans.v7i1.640
Márquez Mota, C. (2021) Cambios en el sustrato después del crecimiento de hogos comestibles. Boletín UNAM-DGCS-657. https://www.dgcs.unam.mx/boletin/bdboletin/2021_657.html
Narváez, L., Bolaños AC, Chaurra, A., & Zuñiga Escobar O (2021). Changes in macronutrients and physical properties during the growth of Lentinula edodes and Pleurotusostreatus in a compost based on sugarcane bagasse agricultural waste. Chilean J. Agric. Anim. Sci., 37(3), 301-312. http://dx.doi.org/10.29393/chjaas37-31cmlo40031.
Naseer, R., Hashmi, A. S., Rehman, H., Naveed, S., Masood, F., & Tayyab, M. (2017). Assessment of feeding value of processed rice husk for Lohi sheep in growing phase. Pakistan Journal of Zoology, 49(5). DOI: http://dx.doi.org/10.17582/journal.pjz/2017.49.5.1725.1729
Ojha, B. K., Singh, P. K., & Shrivastava, N. (2019). Enzymes in the animal feed industry. In Enzymes in food biotechnology (pp. 93-109). Academic Press. https://doi.org/10.1016/B978-0-12-813280-7.00007-4
Palangi, V., Kaya, A., Kaya, A., & Giannenas, I. (2022). Ecofriendly Usability of Mushroom Cultivation Substrate as a Ruminant Feed: Anaerobic Digestion Using Gas Production Techniques. Animals, 12(12), 1583. https://doi.org/10.3390/ani12121583
Piña-Guzmán, A. B., Nieto-Monteros, D. A., & Robles-Martínez, F. (2016). Utilización de residuos agrícolas y agroindustriales en el cultivo y producción del hongo comestible seta (Pleurotusspp.). Revista Internacional de Contaminación Ambiental, 32, 141-151. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2016.32.05.10
Pratheesha, P. T., Lalb, S., Tuvikenec, R., Manickamd, S., & Sudheere, S. (2020). New and Future Developments in Microbial Biotechnology and Bioengineering. https://www.elsevier.com/books/new-and-future-developments-in-microbial-biotechnolo-gy-and-bioengineering/rastegari/978-0-12-820526-6
Sawangwan, T., Wansanit, W., Pattani, L., & Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6), 519-524. https://doi.org/10.1016/j.anres.2018.11.020
Stoknes, K., Wojciechowska, E., Jasinska, A., & Noble, R. (2019). Amelioration of composts for greenhouse vegetable plants using pasteurized Agaricus mushroom substrate. Sustainability, 11(23), 6779. https://doi.org/10.3390/su11236779
Ünal, M. (2015). The utilization of spent mushroom compost applied at different rates in tomato (Lycopersicon esculentum Mill.) seedling production. Emirates Journal of Food and Agriculture, 692-697. DOI: https://doi.org/10.9755/ejfa.2015-05-206
Urrego, J. M., Yepes Jaramillo, S. A., & Barahona Rosaless, R. (2013). Caracterización nutricional del residuo del cultivo de la seta Agaricus bisporus como alimento potencial para bovinos. CES Medicina Veterinaria y Zootecnia, 8(1), 34-56. https://www.redalyc.org/pdf/3214/321428109004.pdf
Copyright (c) 2022 Revista de Producción Animal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors of the articles published in RPA retain the copyright of their work, trademark and patent, and also on any process or procedure described in the article, as well as to share, copy, distribute, execute and publicly communicate the published article in the RPA or any part of it provided that they indicate the source of publication (authors of the work, magazine, volume, number and date), but they agree that the magazine publish the works under a Creative Commons license.
Licencia Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)